If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10+6x^2=82
We move all terms to the left:
10+6x^2-(82)=0
We add all the numbers together, and all the variables
6x^2-72=0
a = 6; b = 0; c = -72;
Δ = b2-4ac
Δ = 02-4·6·(-72)
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{3}}{2*6}=\frac{0-24\sqrt{3}}{12} =-\frac{24\sqrt{3}}{12} =-2\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{3}}{2*6}=\frac{0+24\sqrt{3}}{12} =\frac{24\sqrt{3}}{12} =2\sqrt{3} $
| –6.9k+14.81=0.77+15.5k+12.7k | | 30+t=12+3 | | 4×+8=m | | -6.9k+14.81=0.77+15.5k+12.7k | | v+38=99 | | 2x+10=3x×1 | | 17/14x=8 | | 3+4x-10=20 | | 8+15t=-7 | | x/7+7=15 | | x^2=0.96 | | 7(3x-7)+5x=3x-42+19 | | 4=w10 | | 5x-45=6x-30 | | 2x+1=7x+0 | | x-6+5x+3x-3=180 | | 20-15z=-20-19z | | -2x+1=2-1+x | | w-12=10 | | 3(y-5)+8=38 | | (x+24)(x-2)=0 | | 8x^2-3x-621=0 | | 2(3-2)+2(2x+7)=30 | | (-2/3)+y=17 | | 7(4x+4)=28x+1 | | 0=-0.04x^2+7.1x+7.2 | | 51+y+9=180 | | 12v+7-v=-20+20v | | 4+2c=3(c-2)+1 | | m/5+2=14 | | 200=450(10)^-0.3x | | 3u-2=19 |